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INTRODUCTION 

 

Le trading algorithmique provient de la dématérialisation du traitement des ordres d'achats 
ou de ventes d'actifs. Depuis 1980 l'informatisation des places boursières offre des 
possibilités de traitement en temps réel de l'information financière. Cette révolution 
technologique a permis de développer des procédés et des méthodes d'évaluations 
mathématiques pour identifier des moments où les transactions retournent des bénéfices. 
Les recherches actuelles se portent vers des systèmes de transaction autonomes 
programmés selon certaines périodes et certains algorithmes. En effectuant des opérations 
plus rapidement ils offrent des possibilités de gain là où le trader ne peut intervenir. Il 
existe une trentaine d'algorithmes pour assister le trader, les plus connus sont le VWAP, le 
TWAP, TVOL. Les algorithmes les plus récents offrent des stratégies décisionnelles et 
font l'objet de nombreuses recherches. Ces avancées dans la modélisation d'automates 
décisionnels permettent d'envisager un avenir riche pour ces technologies, les acteurs en 
faisant déjà usage pour plus de 30 % de leurs techniques de trading.  

  

  

PRINCIPES DE BASE  

  

Ce que l'on appelle aujourd'hui trading algorithmique se compose de deux activités : les 
opérations de bourse assistées par des algorithmes qui anticipent et favorisent les 
opportunités de bénéfices (en informant le trader par des graphiques, des alertes et des 
traitements automatiques), et le trading automatisé qui utilise des automates comme agents 
autonomes effectuant des transactions selon des algorithmes et des stratégies paramétrées. 

En première partie de cette étude je présenterai brièvement l'histoire de ces technologies, à 
partir des premiers temps des échanges d'informations aux moyens de relais électriques 
jusqu'à la naissance des réseaux télématiques. Je présenterai ensuite la mise en place des 
premiers échanges automatisés. Enfin je parlerai de la période actuelle et de 
l'informatisation massive des acteurs du marché. 

La seconde partie présentera un état de l'art des différents algorithmes actuellement sur le 
marché. On verra alors qu'il existe plusieurs niveaux d'intervention dans le trading 
algorithmique, soit grâce aux différentes avancées dans le développement des 
automatistes, soit par ce que les stratégies de trading ont été perfectionnées. Ce sera alors 
l'occasion d'aborder plus en détail les aspects stratégiques liés à cette discipline. 
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Puis je présenterai dans une troisième partie les éléments techniques et théoriques 
nécessaires à la mise en place de ce type de trading. Il s'agit principalement des 
environnements informatiques spécifiques et des méthodes utilisées en finance 
quantitative pour suivre et anticiper les marchés au plus près. Nous verrons que ces 
méthodes font régulièrement appel à la recherche en mathématique appliquée ou à 
l'intelligence artificielle. 

Ce travail de synthèse a pour but de permettre une meilleure compréhension des 
techniques de trading actuelles en présentant des informations disponibles dans l'univers 
anglo-américain. Même si ces technologies ne sont pas encore pleinement développées il 
semble évident que la mise en réseaux de nombreuses plate-forme boursières offrira des 
espaces de déploiement particulièrement intéressants. J'ai souhaité rendre accessible cette 
discipline peu connue et peu documentée dans notre pays, la France étant un des plus 
grands pays pourvoyeurs d'experts en finance quantitative grâce à la qualité des ses écoles 
et de ses formations.  

  

  

BREF HISTORIQUE 

Les origines (1860-1970) 

Le trading algorithmique est récent si on le compare à l'existence tricentenaire de la 
bourse, et retracer son histoire implique plusieurs disciplines. Un des points de départ 
pourrait être fixé par la naissance du « pantélégraphe » de l'abbé Giovanni Caselli (On 
peut voir au Conservatoire national des arts et métiers de Paris deux exemplaires du 
« pantélégraphe ». A la réception, on utilisait une feuille de papier imbibée d'iodure de 
potassium pour faire apparaître la signature sous forme d'un dessin de couleur marron. Le 
traitement de l'image se faisait ligne par ligne. Ce traitement par ligne été employé pour la 
télévision et le fax). Exploité par la Société des télégraphes, de 1867 à 1870, il servait à 
expédier des ordres de Bourse et permettait d'authentifier la signature d'un donneur 
d'ordres. C'est cette accélération du traitement et de la diffusion de l'information qui va 
alors sans cesse augmenter, soit par la mise en relation d'acteurs éloignés soit par la 
rapidité d'exécution et de traitement. Les transactions se font ensuite par téléphone, par fax 
et en France par minitel. 

 
 
 
Le trading automatisé (1970-1990) 

A partir de cette période apparaît le trading télématique avec les premiers ordinateurs et 
les écrans de présentation des courbes. Dans un premier temps l' « automated trading » 
n'est pas un trading réalisé par des machines autonomes, mais la mise en place 
d'instruments diffusant automatiquement l'information pour les acheteurs et les vendeurs, 
ainsi que la dématérialisation du passage des ordres. La traduction exacte serait 
« informatisation des salles de marché». Cette informatisation a permis d'effectuer des 
calculs et des arbitrages systématiques sur les valeurs et les indices, méthode qui a pris le 
nom de « program trading ». En rendant le jeu de l'offre et de la demande beaucoup plus 
réactif, les systèmes d'informations ont accentué le crack boursier d'octobre 1987 aux 
USA. Les informations fournies à toutes les parties au même instant ont produit des 
mouvements de masse et des variations extrêmement amples des marchés (le 19 octobre 
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1987, Wall Street perd 22,6 %) [5]. 

 
Le trading algorithmique (1990-2010) 

A partir de cette date les salles de marché ont commencé à s'informatiser massivement 
afin de proposer une cotation en continue et d'offrir une capacité de gestion des 
transactions toujours plus importantes. A partir de 1997, les ECN (Electronic 
Communication Network) sont conçus. Il s'agit de centres informatiques qui mettent en 
relation les professionnels et les brokers pour effectuer des transactions informatisées. Ces 
ordinateurs tournent 24h/24 et offrent une automatisation du marché. Tous les acteurs 
autorisés peuvent se connecter et effectuer des transactions sur le marché coté ou sur les 
marchés hors cote. 

Les nouvelles possibilités de trading offertes par les ECN ont transformé le program 
trading en algorithmique trading. Les capacités des ordinateurs étant dorénavant 
suffisantes pour effectuer des calculs en temps réel, l'ensemble du marché s'est engouffré 
dans l'amélioration du trading assisté par des agents autonomes, les recherches s'effectuant 
dans les grandes institutions financières aussi bien que chez les éditeurs, les brokers ou les 
universités. L'idée est d'optimiser les traitements décisionnels ainsi que les coûts 
transactionnels, car les volumes de données croissent constamment et nécessitent une 
réactivité extrême et une analyse en continue. Les fonctions de trader évoluent donc vers 
plus de monitoring, les opérations les plus simples étant laissées aux algorithmes. 

Parallèlement à ces développements tournés vers les besoins opérationnels des traders, 
depuis 2002 ce sont tenus plusieurs concours de trading automatique regroupant des 
équipes d'étudiants et de chercheurs autour de la plateforme de simulation Penn Lehmann 
Automatic Trading (PLAT) à l'université de Pennsylvanie (Kearns , M. ; Ortiz, L. (2003) - 
The Penn-Lehman Automated Trading Project. IEEE Intelligent Systems, 6, pp. 22-31, 
Nov/Dec). 

Actuellement plusieurs groupes effectuent des recherches sur les algorithmes décisionnels 
automatisés : les chercheurs d'ITG Inc. autour de I. Domowitz, ensuite la communauté des 
chercheurs de l'Université du Texas à Austin avec M. Kearns, P. Stone, A. Sherstov, enfin 
au Royaume-Uni le Center for Financial Research de l'Université de Cambridge avec M. 
A. H. Dempster, R. G. Bates et V. Leemans. 

  

  

BREF ETAT DE L'ART 

  

La plupart des 31 éditeurs référencées par le journal Wall Street & Technology proposent 
des automates et des algorithmes. Tous offrent des algorithmes d'assistance aux traders 
tels que TWAP et VWAP qui permettent de réaliser de nombreuses transactions de faibles 
volumes avec une grande rapidité d'exécution, l'essentiel étant alors de maitriser 
l'optimisation des coûts de transaction et de vitesse d'exécution « temps réel ». 

S'il y a de nombreux algorithmes et automates utilisés dans les salles de marché, les 
banques se refusent souvent à communiquer autour de ces technologies, ces informations 
étant considérées comme confidentielles. Seuls les éditeurs de logiciel, les cabinets de 
consultant (TABB Group) ou les laboratoires de recherches universitaires offrent des 
données sur l'état actuel des produits et des technologies.  
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Les algorithmes de base 

Ces algorithmes fonctionnent tous sur le principe de la troncature des ordres volumineux 
en série de lots assimilables par le marché. Plusieurs avantages sont liés à cette technique : 
réduire les coûts de brokerage en faisant traiter les ordres par des machines aussi bien du 
côté achat que du côté vente au lieu de les passer par téléphone, construire des stratégies 
de vente aussi proche du marché que possible sur une certaine période afin de pouvoir 
vendre l'ensemble des lots, réduire les erreurs d'exécutions tout en épargnant de 
fastidieuses opérations aux traders.  

L'utilisation de ce type d'algorithme fait plus particulièrement l'objet de séminaires et de 
formations car ces méthodes sont de plus en plus utilisées par les hedge funds et 
nécessitent une formation spécifique.  

• VWAP (volume-weighted average price) : cette technique est utilisée 
principalement par les fonds de pension ou les fonds mutualistes pour vendre un 
gros volume en de nombreux petits ordres. Elle permet de réduire les coûts des 
brokerage par un pré-appariement des ordres d'achat/vente. Une transaction en 
VWAP se fera par exemple 40% le matin et 60% l'après midi, répartie selon le 
volume de transactions observées sur la place boursière.  

• TWAP (time weighted average price) : cette technique est employée pour effectuer 
de nombreuses petites opérations selon une période donnée. Comme pour le 
VWAP il s'agit d'automatiser l'achat ou la vente d'un grand nombre d'actions par 
morceau. Un TWAP sur une journée se répartira 50% le matin et 50% l'après midi. 
Cette méthode permet d'identifier un prix de vente moyen.  

• Arrival Price / Shortfall (IS, Implementation shortfall) : L'algorithme de prix 
d'arrivée permet de déterminer un prix fixé auquel on souhaite vendre ou acheter 
des actions. Le logiciel effectue toutes les transactions en tenant compte de 
l'impact sur le marché, de la liquidité, du volume et de la durée pour aboutir à ce 
prix moyen.  

• Percent of Volume : Même principe de fractionnement des volumes cette fois ci en 
de manière proportionnelle au volume des transactions en cours ce qui permet de 
garantir une meilleure exécutions des ordres.  

• TVOL (Target Volume) : Cet algorithme a les mêmes fonctionnalités que les 
précédents (VWAP, TWAP) mais effectue les transactions en fonction d'un 
volume d'achat ou de vente souhaité. 

  

Fonctionnement 

Ces algorithmes étant paramétrés ils doivent être accessibles aux programmeurs qui vont 
leur donner des instructions de travail. Les principales données employées ne varient pas 
de celles déjà utilisées par les traders, ces algorithmes étant basés sur des stratégies de 
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 5 

trading conçues et expérimentées en salle de marché entre les Quants et les traders.  

Les automates peuvent fonctionner sur différentes OS, Windows/Mac/Unix et sont 
programmés avec différents langages Java, C#, et principalement C++. Ils emploient aussi 
des systèmes de cryptage et de certificats digitaux qui servent à authentifier et sécuriser les 
transactions. Les machines qui doivent supporter ces algorithmes sont particulièrement 
puissantes, car dans certains cas elles effectuent des traitements sur plusieurs sources en 
temps réel en tenant compte des données historiques afin de calibrer les transactions 
(volatilité implicite pour le trading option par exemple).  

L'idée de départ est d'obtenir un agent autonome dans ces décisions de trading afin 
d'effectuer des transactions de manière extrêmement réactive. Pour cela il faut sélectionner 
les données que l'automate devra prendre en compte. La première donnée est le 
positionnement dans le temps. Quelles sont les périodes optimums à prendre en compte 
pour construire un jeu de données fiable ; à quel moment initier ou clore une transaction. 
La seconde donnée est quelles types de transactions effectuer et sur quels marchés et en se 
basant sur quelles données : écart-type (volatilité), microstructure de marché, pas de la 
cotation (spread). Enfin la troisième donnée concerne les contraintes à mettre en place 
pour éviter des pertes importantes. 

Pour optimiser les coûts de transactions les Brokers ont proposés des accès direct au 
marché (DMA) spécialement dédiés aux transactions électroniques. Le trader passe de 
moins en moins d'ordres par téléphone, et se concentre sur des transactions spécifiques. Il 
existe plusieurs fournisseurs d'algorithmes : 

- les Brokers disposant de plate-forme DMA offrent en général des 
algorithmes à l'usage de leurs clients 

- les éditeurs qui peuvent fournir des algorithmes personnalisés 
- le développement en interne par les plus grandes banques. 

La puissance des ordinateurs permet actuellement d'implémenter de plus en plus 
efficacement des algorithmes comportementaux et décisionnels. Basés sur les concepts 
d'intelligence artificielle et de la théorie des jeux, ces algorithmes nécessitent d'être pilotés 
et paramétrés par des quant et des traders toujours plus compétent en informatique et en 
mathématique. 

Certaines personnes pensent que ces machines assureront 40% des échanges de capitaux 
sur les marchés des equities américains d'ici 2008-2010 (Der Hovanesian, Mara. (2006) - 
Cracking The Street's New Math. NY financial).  

  

  

  

CONCLUSION 

  

Quand les algorithmes de trading sont utilisés pour découper les ordres en petites 
transactions le premier effet est de produire une surcharge du nombre d'ordres passés, 
obligeant les bourses à mettre en œuvre des plateformes toujours plus puissantes pour 
éviter les erreurs de cotations et de transactions. A cette fin, des éditeurs comme IBM 
proposent des technologies spécifiques pour la finance avec des serveurs 4 cœurs 
spécialement adaptés pour la gestion des flux.  
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 6 

Un autre effet secondaire est que ces technologies réclament des ressources humaines très 
spécialisées en finance quantitative et informatique. Depuis 2005 les Quant sont donc 
devenus particulièrement sollicités par les hedge funds et les grandes banques d'affaires 
afin d'effectuer des calculs sur les tendances à partir des données du marché ou de 
développer des calculs spécifiques. La demande se fait aussi sentir du coté des éditeurs et 
des prestataires de services informatiques dont les clients réclament des plateformes 
opérationnelles et l'intégration d'algorithmes toujours plus affinés. La vente d'algorithmes 
par les sociétés de courtages ou des éditeurs doit aussi faire face aux limites des clients qui 
ne sont pas toujours au fait des dernières applications de la recherche en finance 
quantitative et pourraient montrer des difficultés à utiliser des services trop complexes.  
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